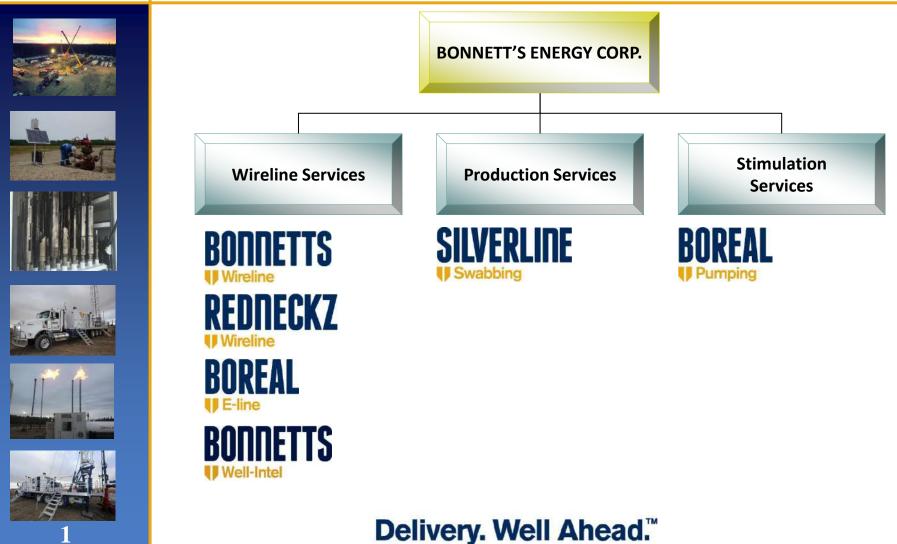


Bonnett's Energy Corp.



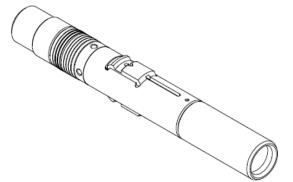
Benefits of Bottomhole Chokes

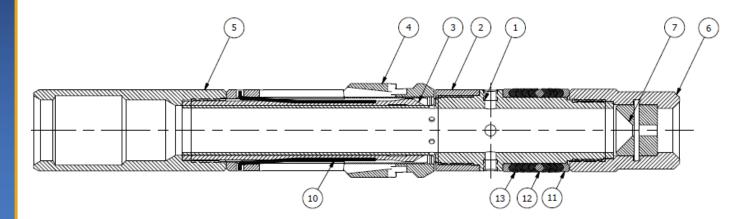
Date – 2021 Contact – Ron Potts - Operations Manager Bonnett's Wireline

Service Offerings

Geographical Coverage

Downhole AX Choke





PARTS LIST								
ITEM	QTY	PART NUMBER	DESCRIPTION	MATERIAL				
1	1	08-02-X-200-06	Packing Mandrel	As REQ				
2	1	08-02-X-200-03	Key Retainer	As REQ				
3	1	08-02-X-200-02	Expander Sleeve	As REQ				
4	2	08-02-X-200-04	Key	As REQ				
5	1	08-02-X-200-01	Fishneck	As REQ				
6	1	09-02-XC-200-01	Сар	As REQ				
7	1	09-02-XC-200-02	Choke	As REQ				
14	1	Parker (External) No. 2-216	O-Ring Face Seal Glands (External)	Rubber				
10	2	08-02-X-200-05	Key Spring	As REQ				
11	2	08-02-BUR-187-01	Female Back Up Ring	As REQ				
12	1	08-02-BUR-187-02	Male Back Up Ring	As REQ				
13	7	08-02-VP-187-01	V' PACKING	As REQ				

Choke Beans

Optional Choke Parts

5

Boronized Packing Mandrel

Diffuser Boronized

Recorder Hanger

Debris Screen

Choke Cap

Reasons to Run a Choke

h

- The need to manage flow rates
- Initial start up
 - Hydrate prevention

- Reservoir drawdown (water drive etc.)
- Gathering system capacity third party restrictions
- Capital cost savings
- Reduced testing issues
- Liquid loading issues.

Initial Start-up

- Downhole chokes eliminate large pressure drops at surface
- Lower pressures reduces hydrate formation temperature
- Flowing temperature generally increases to further help with hydrate issues
- Eliminated pressure drop at surface reduces methanol requirements
- Packered wells are especially prone to tubing hydrates. They generally flow colder due to thermal conductivity of annular fluid which is augmented due to low velocities
- Chemical cost reductions have been significant in the Montney – Chokes in the tie back strings

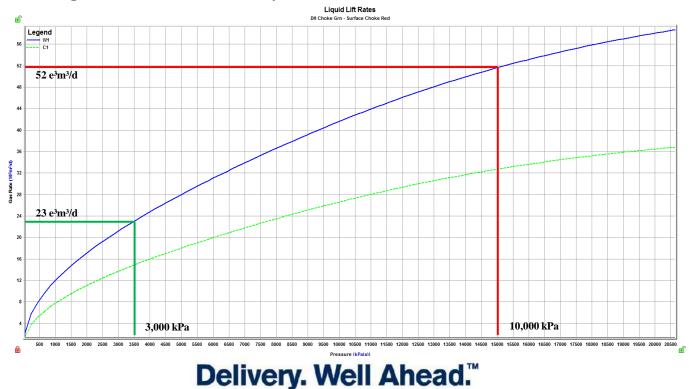
Capital Cost Savings

- Elimination of line heaters \$150K + initial investment
- A lot of line heaters are not fired after the first few months
- Cost of pipes valves etc. to relocate is still higher than the choke option
- Initial choke installation +/- \$7000
- Subsequent changes under \$5K several changes may be needed depending on decline

Reduced Testing Issues

- Initial choke sized based on short flow after initial frac flow back – choke is run with recorders hanging below
- With the choke above the recorders. The choke provide stable trouble free testing
- Pressure data is not affected pressure drop is above recorders
- Tests run trouble free with minimal interruption associated with hydrate and loading issues

Liquid Loading Issues



• Taking the pressure drop downhole reduces tubing pressure by allowing well to flow on line pressure. Lower tubing pressure increases velocity and lowers the loading point.

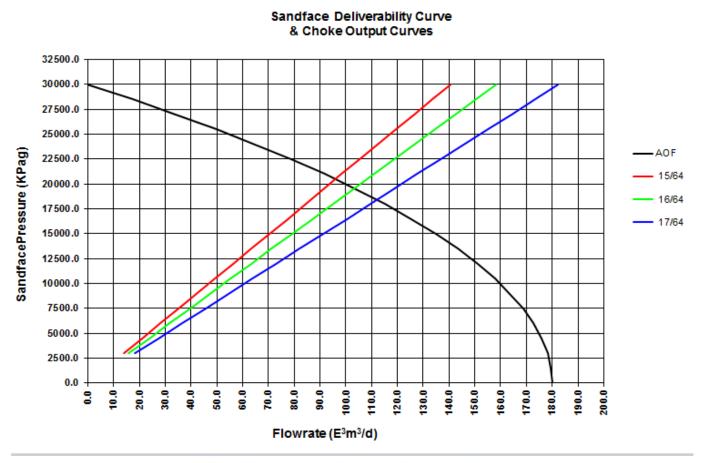
• During sizing, loading point is calculated to ensure choke is large enough to maintain steady flow.

Choke Calculation Worksheet

_	1			
	and the second	T		
-	Sec.		-	

FLOW CALCULATION FOR FLOW THROUGH CHOKES				Size	Coeff	Rate	Decimal Equiv
COMPANY: ABC O&G		Graph I	nput	4/64	1.24	4.94	0.063
LOCATION: 01-02-003-04W5		15/64	23.54	5/64	2.14	8.52	0.078
DATE: 31/3/2016		16/64	26.51	6/64	3.26	12.98	0.094
		17/64	30.53	7/64	4.61	18.36	0.109
REQUIRED INFORMATION:				8/64	6.25	24.89	0.125
(enter data in blocks only) Gas gravity	0.65			9/64	7.99	31.82	0.141
upstream, or wellhead temp - deg C	80			10/64	10.02	39.90	0.156
Upstream pressure - kPa	20000			11/64	12.27	48.87	0.172
Single point coefficient	26.51	16/64		12/64	14.44	57.51	0.188
Single Point Fl	13/64	17.45	69.49	0.203			
Gas Rate	105.58			14/64	20.38	81.16	0.219
				15/64	23.54	93.75	0.234
	Test Rate			16/64	26.51	105.58	0.250
q	100	e ³ m ³		17/64	30.53	121.59	0.266
Pi	30000	kPa		18/64	34.36	136.84	0.281
Pwf	20000	kPa		19/64	38.43	153.05	0.297
n	1	(assumed)		20/64	43.64	173.80	0.313
С	0.0000002	e ³ m ³ /d/kPa ²		21/64	47.23	188.09	0.328
				22/64	51.97	206.97	0.344
* Note - assumes critical flow conditions exist; downstream pressure must be 55% or less, than					56.93	226.72	0.359
upstream pressure - below 55%, downstream pressure will not affect this calculation					61.21	243.77	0.375
				25/64	67.54	268.98	0.391
DODDET				26/64 27/64	73.18	291.44	0.406
					79.05	314.82	0.422
					85.14	339.07	0.438
				29/64	91.47	364.28	0.453
				30/64	98.02	390.36	0.469
Wireline				31/64	104.79	417.33	0.484
				32/64	112.72	448.91	0.500

Calculation Sheet Continued



Frequently Asked Questions

- What choke do I need that will deliver a specific amount of gas at a defined flowing tubing pressure?
- What about stored tubing volume and high initial startup rates? Does the choke control the reservoir drawdown?
- Where in the deviation can a choke be set?
- Have you seen any problems with scale?
- Can I size the choke a bit bigger, and then take some pressure drop at surface?

Contact Information

Ron Potts – Operations Manager Bonnett's Wireline Cellular 780 814-1420 Email RPotts@bonnettsenergy.com

Larry Shewfelt – Operations Manager Redneckz Wireline Cellular 780-518-9209 Email Lshewfelt@ bonnettsenergy.com

Jeff Foster – Sales & Marketing Manager Cellular 403 512 4465 Email <u>JFoster@bonnettsenergy.com</u>